
 

 

 

 

 

An Expeditious Parallel Maximum  

Likelihood Expectation Maximization 

 3D Image Reconstruction Technique for CBCT 

 

 

 

 

 

 

 

 

Shaimaa Shukri Abd Alhaleem
 1*

, Shimaa Abdulsalam Khazal 
2 

 

 

1 Computer Technical Engineering Department, Almustafa University College,  

2 Computer Technical Engineering Department, Almustafa University College,  

 shimaa.cte@almustafauniversity.edu.iq 

shaimaa.cet@almustafauniversity.idu.Iq 

 
 

 

 

 

 

 



 

Abstract 

Computed Tomography signifies an imaging process that constructs cross sectional 

images, which reveal the internal structure of a scanned object in a nondestructive 

manner. Cone-beam CT is one of the most advanced developments in CT imaging, 

which presents an indispensable imaging technique that constructs three-

dimensional images from the scanned object, Using cone-beam X-ray projections 

rather than the more often used fan-beam planar projections ensures quicker but 

safer three-dimensional imaging with less radiation than traditional CT imaging 

methodologies. However, these advancements come at the expense of a challenging 

3D reconstruction issue that still requires changes in the speed and accuracy of the 

reconstructed image. In this article, we present a parallel implementation of an 

efficient parallel Maximum Likelihood Expectation Maximization (MLEM) 

algorithm for CBCT that provides a more reliable and faster reconstruction even 

with a small number of projections. We reconstructed a test volume image with this 

parallel version of the MLEM algorithm and used various image quality indices to 

test the effects of our proposed approach as well as the effect of the number of 

iterations on the reconstruction time and image quality. According to the data, the 

reconstruction of volume images using the proposed parallel algorithm was quicker 

than the standard reconstruction method using the non-parallel MLEM algorithm 
 

I. INTRODUCTION. 

CT (computed tomography) was first used in the early 1970s. It was previously 

known as computed axial tomography, or (CAT) scanning. The term computed was 

used in the summary to emphasize the computer's critical role in the advancement 

of this technology [1]. This medical imaging technique collects projection data 

from a scanning target and uses it to recreate cross-sectional images. The rotation of 

an X-ray source and a detector unit on opposite sides of each other produces the 

projection results. The three major types of X-ray beam are parallel, fan, and cone 

beam, indicating that CT image restoration techniques are dependent on the shape 

of the X-ray beam [2]. Fan-beam imaging produces two-dimensional (2D) images 

from its projection acquisition process. A projection at a given angle is the image's 

integration in the direction defined by that angle. A sinogram is a set of projections 

obtained from various angles during a CT scan that is used in the reconstruction 

process. Cone Beam Computed Tomography (CBCT) is a 3D expansion of 2D fan-

beam CT tomography, obtaining a volume of projection data from a single rotation 

of the 2D detector array. As opposed to traditional CT, the CBCT technique has 



 

many benefits, including faster scan time, lower X-ray radiation exposure, and so 

on [3]. One of the primary benefits of CBCT is that it saves time during the data 

collection phase [4]. After collecting a volume of sinogram data, 3D image 

reconstruction techniques are used to recreate the volume image. The mathematical 

techniques used in the reconstruction process are classified as analytical, which use 

the concept of the central slice theorem, such as the Feldkamp, Davis, and Kress 

(FDK) method [5], and iterative, which attempt to solve the reconstruction problem 

by converting it into a system of simultaneous linear equations and then resolve to 

iterative methods, such as the ART and the MLEM algorithms [6,7].  The MLEM 

has recently gained popularity as a result of recent advances in computing power 

through evolved CPU, GPU, and parallel computing. Some previous studies 

explored 3D reconstruction techniques for CBCT, while others used non-parallel 

reconstruction approaches and others used parallel computation approaches to 

improve the reconstruction process's output speed. Kubra Cengiz and Mustafa 

Kamasak [8] used the Shepp-Logan test phantom to apply an iterative algorithm in 

the non-parallel reconstruction. The achieved reconstruction speed was poor, with a 

single iteration taking nearly (13) minutes for just (11) projections. Noor Hussein 

Fallooh [9] conducted extensive research on 3D image reconstruction algorithms in 

CBCT for both iterative and analytical approaches. The observed results were 

compared to varying numbers of iterations and image quality tests. In addition, 

Jorge Aviles [10] developed an iterative reconstruction approach with a limited 

number of predictions. Despite the fact that the projection data used was limited, 

the reconstruction time took more than three and a half hours. Jian Fu et al. 

illustrated the use of analytical and iterative algorithms [11]. Their restored pictures 

were of poor quality. This study found that iterative algorithms needed some 

specialized work to improve reconstruction speed. Parallel computing experiments, 

on the other hand, demonstrated significant gains in computation time. W. Qiu et al. 

demonstrated a substantially shortened reconstruction time for a single iteration 

using the ART algorithm in [12]. Z. Fan and Y. Xie used a GPU in [13], which 

resulted in a faster calculation time with the ART algorithm for just 60 projections, 

but they mentioned that their methodology did not yield high-quality images. 

Claudia de Molina et al. suggested a GPU-accelerated iterative reconstruction 

method for limited-data CBCT systems in [14]. Because of the use of the GPU, the 

authors introduced a time reduction, resulting in a complete reconstruction time 

reduction from many hours to a few minutes. 

To the best of our knowledge, no studies on the statistical MLEM algorithm image 

reconstruction using parallel computation have been conducted. In this paper, we 



 

show a prompt parallel version of the MLEM algorithm for CBCT and compare its 

output to the non-parallel version of the MLEM algorithm. The image 

reconstruction outputs are measured over 

a series of iterations in terms of reconstruction accuracy, speed, and X-ray radiation 

exposure quantity, which is affected proportionally by the number of projections. 

As opposed to the non-parallel technique, the findings suggest a substantial 

decrease in computation time. Furthermore, even with a small number of 

projections, our implementation offers improved picture consistency. The format of 

this paper is as follows: first, an outline of projections data generation is presented, 

followed by a detailed description of the MLEM reconstruction technique. The 

suggested parallel image reconstruction implementation is then seen. 

Projection Data Initiation 

Projections are an arrangement of rays that enter an object at some orientation angle 

during a CT scan. The main notion of a projection at a given angle is that it 

represents the integration of the image in the direction specified by that angle [7]. A 

two-dimensional projection 𝑝(𝑖, 𝜃) at the angle (𝜃) is represented by the following 

equation:  

𝑝(𝑖, 𝜃) = 𝑎𝑖1𝑥1  +  𝑎𝑖2𝑥2  +  𝑎𝑖3𝑥3 + . . . +𝐴𝑖𝑁𝑋𝑁     𝑖 = 1,2,3 … … 𝑁 

In this equation, 𝑥𝑗 denotes the strength of the jth pixel in the image, and 𝑎𝑖𝑗 

denotes the weight of the ray in pixel (j) that reached detector bin (i). This 2D 

projection is extended into 3D for CBCT using Siddon's algorithm, which is a 

technique for generating 3D projections [15]. This algorithm's execution is carried 

out by carrying out the following steps: 

1. The scanned subject is divided into three orthogonal planes, 𝑁𝑋, 𝑁𝑌, and𝑁𝑍.  

2. The entry and exit points of the ray that penetrates the subject are 

determined by calculating the ray's intersection with the plane boundaries in 

each direction.  

3. Determine the distribution of the plane indices between these lines 

4. The voxel indices and section length of the ray inside each voxel (i.e., voxel 

weight) are computed. 



 

The method is rotated after calculating the first projection at the first angle to obtain 

the next projection point at a different angle. In this study, we simulated the 

projection data for the optical Shepp-Logan head phantom (256*256*256) in the X, 

Y, and Z planes. 

The Maximum Likelihood Expectation Maximization Imaging 

Technique 

The Richardson-Lucy algorithm is another name for the MLEM algorithm, because 

Richardson and Lucy developed it in order to de-blur image applications [16] [17]. 

This algorithm is known as statistical iterative. In mathematical statistics there is a 

common iterative method known as the Expectation Maximization (or EM) 

Algorithm [18], the name of this technique originates from the fact that in each 

iteration there is an expectation step, that uses an estimation of the current 

parameter that is used to perform the reconstruction, followed by a maximum 

likelihood step that uses this reconstruction to adjust the estimate of the parameter 

[19].  

In image restoration, the maximum likelihood technique is a realistic application of 

the EM process that works well where the projection data is incomplete [18]. 

Within the MLEM algorithm, the estimate of the image must fit the measured 

projections Eq. (1) expresses this algorithm [7]. 

𝑥𝑛𝑒𝑥𝑡  =  𝑥𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∗
Backproject {

Measurment
𝑃𝑟𝑜𝑗𝑒𝑐𝑡 (xcurrent)

}

Backproject {1}
… … … … … (1) 

The (1) in this equation is a vector of (1's). The vector has the same dimensions as 

the projection data vector. The uncertainty in the data is measured as a ratio rather 

than a discrepancy in this algorithm. The MLEM algorithm searches for the best 

solution (image) based on the projection data; Fig. (1) shows a diagram of this 

algorithm [20]. 



 

 

Figure (1) Diagram of the MLEM algorithm [20].  

 

This figure demonstrates the MLEM reconstrucion process that is initated by 

generating an image estimate, simulating its projections, compairing them with the 

measured projections, then back-projectioning the result, normalizing the process, 

and finaly updating the image. These steps are repeated in each iteration. 

Statistical iterative reconstruction algorithms have been proven beneficial in 

improving image quality [20]. In the MLEM algorithm, the objective function is 

defined first, then optimized. This algorithm seeks the best solution (image) based 

on the projection data. Eq. (2) [7] defines the iterations of the MLEM algorithm. 

𝑋𝑗
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Equation (2) is employed to update the pixel (𝑋𝑗
𝑐𝑢𝑟𝑟𝑒𝑛𝑡) of the initial image, by 

adding the back-projected effects of the contrast of the picture pixel's  (𝑗),  

calculated and simulated projections (j), for each projections ray (𝑖). The result of 

this comparison then normalized using (∑ 𝑎𝑖 𝑖𝑗
), which is a back projection of a 

vector of (𝑜𝑛𝑒𝑠). This normalized pixel is used as a modification element that 

multiplies the current estimate of the image pixel with the original estimate of the 
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image pixel to correct the current estimate of the image pixel, which is then used as 

the new initial image pixel in the next iteration [7]. 

Parallel Implementation of the MLEM Algorithm 

While MLEM is a non-parallel reconstruction algorithm, it can be applied in 

parallel. In this study, we introduced a parallel computation method in the MLEM 

algorithm, which is used via vectorization and parallelization through CPU to speed 

up the volume Image reconstruction time. Vectorization is a digital technique that 

uses vector operations rather than loop-based operations on individual elements. In 

parallel computation, the automatic vectorization mechanism is a linear 

transformation that converts two-dimensional data into a one-dimensional vector. In 

other words, it is a compiler optimization that converts loops to vector operations. 

This procedure shortens the turnaround time. We implemented the proposed 

vectorization method in the MLEM by calculating projections to reduce the 

reconstruction time of the 3D image. The equations are used to update the weight of 

voxels in order to reconstruct the amount of images according to the MLEM 

algorithm's update equation Eq (2). The vectorization operation is carried out by 

reconstructing the MLEM algorithm using a Graphical-processing unit (GPU), 

which is described as a parallel, multithread, multi-core processor with enormous 

processing power. GPUs are used in the iterative reconstruction process because 

matrix-vector multiplication is the most time-consuming step in these algorithms. 

As seen in Fig. (2) [20] [21], huge collections of pixel weights and detector data 

could be mapped to parallel threads in GPUs and processed much faster than in 

CPUs. 
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Figure (2) Parallelization of the projection data for 3D image reconstruction [21]. 

This diagram illustrates how running the MLEM algorithm on the GPU allowed 

parallel processing of large sets of pixels and projection results. This parallel 

method is a mode of operation in which an operation is divided into sections that 

are executed concurrently on separate processors connected to the same machine, 

allowing them to be processed even faster than CPUs. The algorithm would 

actually run quicker because it takes advantage of the GPU's high efficiency to 

speed the operation [20]. 

 

 

 

Results and discussion  

Computing projection data 

In this study, a one-degree rotation angle step is used. The size of the obtained 

projections was (256 * 256 * 360), where (256 * 256) is the size of the detector 

matrix and (360) is the number of projection angles. Figure (3) depicts three 

projections of a Shepp-Logan head phantom at three different angles of 0
0
, 45

0
 

and 90
0
. Figure (4) depicts the outcome of our planned solution. The findings 



 

show that creating the projection data took a long time. As a result, by using our 

suggested vectorization of the parallel method, we are able to reduce the time. 

 

(a)                                                    (b)                                          (c) 

Figure (3) Cone-beam projections of a Shepp-Logan test phantom at the angles of 

(a) 0
0
, (b) 45

0
, and (c) 90

0 

 

 

Figure (4) Effect of the parallel process on the projection generation time 

The projection processing time of (360) views before the vectorization process 

takes (7.97) hours with a phantom of (256 *256 *256), but it takes (30.51) 

minutes with the parallel process. This projection data are used as raw inputs in 

the reconstruction process to generate 3D images. 



 

Results of the Reconstruction Process  

The reconstructed slices of the 3D phantom test image from our rapid parallel 

MLEM algorithm are illustrated in Fig. (5) 

 

Figure (5) The reconstructed Shepp-Logan phantom images Using the parallel 

MLEM algorithm (a) Axial, (b) Coronal, and (c) Sagittal 

The quantitative research efficiency assessment of the reconstructed images is 

seen using a Peak Signal to Noise Ratio (PSNR), Root Mean Square Error 

(RMSE), and Structural Content (SC) [23]. 

Effect of the Number of Iterations on the MLEM Algorithm 

The statistical iterative MLEM technique depends on two values, specifically the 

relaxation parameter and the number of iterations. The relaxing factor should be 

changed to a value between 0 and 1. We decided, on the other hand, to investigate 

the influence of the number of iterations parameter for the values (0, 10, 20, 30,... 

300) with a fixed relaxation parameter of (1). The consequence of the number of 

iterations is depicted in Fig. (6) on the performance in term of the PSNR, RMSE, 

and SC. The results show that in the case of parallel and the non-parallel MLEM 

technique, increasing the iteration number leads to a reduced value of the RMSE, 

which is a measure of the average magnitude of the error, and increase the PSNR 

and SC, which measures the peak error and establishes the degree to which 

images match each other respectively.  



 

 

(a)                                                                      (b) 

 

(c) 

Figure (6) Impact of increasing the number of iterations on (a) PSNR, (b) SC, (c) 

RMSE 

These findings show that increasing the number of iterations improves the 

accuracy of the restored picture thus lengthening the reconstruction process. 

The Reconstructed 3D Image's Quality 

The reconstruction technique's findings using the full scan projections details of 

the Shepp-Logan phantom are seen in Fig (5). The findings reveal the restored 

volume's coronal, sagittal, and axial slices. In terms of image accuracy, the 

Traditional MLEM approach performs similarly to the Parallel MLEM. The 

calculation time of these methods differs significantly, as seen in Table (1). 

Table (1) Image quality measurements using the parallel and non-parallel MLEM 

algorithm. 

View RMSE PSNR SC 

Axial 0.2569 11.8061 0.8311 

Coronal     
0.2695 

11.3877 0.8833 

Sagittal  0.2505 12.0242 0.7560 

 



 

Conclusion  

In this article, we demonstrated a quick version of the MLEM algorithm using 

parallel computing and defined its success for CBCT. The results show that the 

reconstructed images provided by the MLEM take less time to recreate. Even with 

a small amount of projection results, our parallel method performs well. Since a 

lower volume of projection data means a shorter scanning period, it often 

indicates a lower radiation exposure. As a result of our study, we were able to 

have a better image reconstruction method with superior accuracy, faster 

computation time, and fewer projection data, which reduced the necessary 

radiation exposure. The MLEM solution discussed here could be a better image 

restoration technique for CBCT in clinical applications. 
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